The Virtual Solar–Terrestrial Observatory*

Peter Fox (pfox@ucar.edu)
HAO/NCAR
(with Don Middleton, Stan Solomon, Deborah McGuinness, Jose Garcia, Patrick West, Luca Cinquini, James Benedict, Tony Darnell)
Work partially funded by NSF/CISE/SCI
Outline

➢ Concept and user needs
➢ What’s new about a VSTO?
➢ Phased implementation
➢ Current developments
 ➢ User requirements
 ➢ Use-case 1
 ➢ Ontology development
 ➢ Example encoding (OWL)
➢ Status
Concept and user needs

Goal - find the right balance of data/model holdings, portals and client software that a researchers can use without effort or interference as if all the materials were available on his/her local computer.

The Virtual Solar-Terrestrial Observatory (VSTO) is proposed to be:

- a distributed, scalable education and research environment for searching, integrating, and analyzing observational, experimental and model databases in the fields of solar, solar-terrestrial and space physics

VSTO would comprise:

- a system which provides virtual access to specific data, model, tool and material archives containing items from a variety of space- and ground-based instruments and experiments, as well as individual and community modeling and software efforts bridging research and educational use
What’s new in the VSTO?

- Datasets alone are not sufficient to build a virtual observatory: VSTO will integrate tools, models, and data.
- VSTO addresses the interface problem, effectively and scalably.
- VSTO addresses the interdisciplinary metadata and ontology problem - bridging terminology and use of data across disciplines.
- VSTO leverages the development of schema that adequately describe the syntax (name of a variable, its type, dimensions, etc. or the procedure name and argument list, etc.), semantics (what the variable physically is, its units, etc.) and pragmatics (or what the procedure does and returns, etc.) of the datasets and tools.
- VSTO provides a basis for a framework for building and distributing advanced data assimilation tools.
Integration: catalog schema→ontologies

- Basic problem: schema are categorized rather than developed from an object model/class hierarchy → significantly limits non-human use. However, they all form the basis to organize catalog interfaces for all types of data, images, etc.

- Directories, e.g. NASA GCMD, CEDAR catalog, FITS (flat) keyword/value pairs, are being turned into ontologies (SWEET, GEON, VSTO)

- Markup languages, e.g. ESML, SPDML, ESG/ncML are excellent bases

- Evolve, recast, merge (where appropriate) using formal processes and tools, driven by a variety of use-cases

- Ontology – specification of a conceptualization – is the basis for interface specifications, allows reasoning, validation, etc.

- Allow for levels of semantic use of metadata (e.g. search, access, use)
Phased implementation

- CEDAR, CISM, ACOS
- Realms (ontologies):
 - Covers middle atmosphere to the Sun + SPDML
 - Mesh with Earth Realm (SWEET)
 - Mesh with GEON

Use-cases and user requirements
ACOS at the MLSO

Near real-time data from Hawaii from a variety of solar instruments, as a valuable source for space weather, solar variability and basic solar physics.
Goal: To create a physics-based numerical simulation model that describes the space environment from the Sun to the Earth.

THE USES OF SPACE WEATHER MODELING

A scientific tool for increased understanding of the complex space environment.

A specification and forecast tool for space weather prediction.

An educational tool for teaching about the space environment.
CEDARWEB

Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) is a focused Global Change program sponsored by the National Science Foundation (NSF). The scientific objectives of the program are described in the CEDAR Phase III document (1.6 MB, acrobat reader required).

The CEDAR Data System (formerly the CEDAR Database and before that, the Incoherent Scatter Radar Database) is a cooperative project between the High Altitude Observatory (HAO) division of the National Center for Atmospheric Research (NCAR), the National Science Foundation (NSF), and numerous institutions that provide upper atmosphere data and model output for community use.

The CEDAR Data System mission is to provide:

- long term archive for observations and models of the Earth's upper atmosphere and geophysical indices and parameters needed to interpret them,
- browsing capability to survey the data holdings and identify periods, instruments, models, of interest,
- reliable data access methods that are fast, stable and interactive, and
- detailed documentation on data acquisition and reduction.

Proceed to data selection now

This site also supports the CEDAR community which is represented by the CEDAR Science Steering Committee consisting of representatives from the community and NSF and meets twice a year. Read more about the community in the latest CEDAR POST (latest issue).

-- Revised 31 October 2003 by pffox@ucar.edu
User requirements

CEDAR
- Search must return data (i.e. no null searches)
- Search across instruments, models
- Know about special time periods, campaigns, etc.
- Allow selections based on (appropriate) geophysical conditions, e.g. Kp index
- Usual format returned and in correct units
- Must be able to easily re-create the search, access
- Visual browsing

MLSO
- Same as CEDAR !!
- + sampling interval choice, e.g. minutely, daily, average, best of the day, synoptic
CEDARWEB: Instruments/parameters now – flat and mixed

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Code</th>
<th>ABBR</th>
<th>ALT</th>
<th>LONG</th>
<th>LAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jicamarca Peru I.S. Radar</td>
<td>10</td>
<td>JRO</td>
<td>-11.95</td>
<td>283.12</td>
<td>0.520</td>
</tr>
<tr>
<td>Arecibo P.R. I.S. Radar</td>
<td>20</td>
<td>ARO</td>
<td>18.35</td>
<td>293.25</td>
<td>0.00</td>
</tr>
<tr>
<td>Millstone Hill I.S. Radar</td>
<td>30</td>
<td>MLH</td>
<td>42.62</td>
<td>288.51</td>
<td>0.146</td>
</tr>
<tr>
<td>EISCAT I.S. Radar</td>
<td>70</td>
<td>EIS</td>
<td>69.58</td>
<td>19.22</td>
<td>0.087</td>
</tr>
</tbody>
</table>

Ground-Based Indices:

<table>
<thead>
<tr>
<th>Geophysical NGDC: AE</th>
<th>Code</th>
<th>ABBR</th>
<th>ALT</th>
<th>LONG</th>
<th>LAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>AEI</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Geophysical NGDC: Dst

<table>
<thead>
<tr>
<th>Code</th>
<th>ABBR</th>
<th>ALT</th>
<th>LONG</th>
<th>LAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>212</td>
<td>DST</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Model Outputs:

<table>
<thead>
<tr>
<th>Code</th>
<th>Full Name</th>
<th>Scale</th>
<th>Units</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>Altitude (height)</td>
<td>1.0</td>
<td>km</td>
<td>gdalt</td>
</tr>
<tr>
<td>120</td>
<td>Range</td>
<td>1.0</td>
<td>km</td>
<td>range</td>
</tr>
<tr>
<td>130</td>
<td>Mean azimuth angle (0=N, 90=E)</td>
<td>1.0</td>
<td>deg</td>
<td>azm</td>
</tr>
<tr>
<td>140</td>
<td>Elevation angle (0=horizontal, 90=vertical)</td>
<td>1.0</td>
<td>deg</td>
<td>elm</td>
</tr>
<tr>
<td>194</td>
<td>Declination angle (GEI coordinates)</td>
<td>1.0</td>
<td>deg</td>
<td>dec</td>
</tr>
</tbody>
</table>

Basic ionospheric parameters

<table>
<thead>
<tr>
<th>Code</th>
<th>Full Name</th>
<th>Scale</th>
<th>Units</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>510</td>
<td>Electron density</td>
<td>1.0</td>
<td>m$^{-3}$</td>
<td>ne</td>
</tr>
<tr>
<td>550</td>
<td>Ion temperature</td>
<td>1.0</td>
<td>K</td>
<td>ti</td>
</tr>
<tr>
<td>552</td>
<td>Ion temperature</td>
<td>0.1</td>
<td>K</td>
<td>tip1</td>
</tr>
<tr>
<td>560</td>
<td>Electron temperature</td>
<td>1.0</td>
<td>K</td>
<td>te</td>
</tr>
</tbody>
</table>

Line of sight neutral velocity (away: >0)

<table>
<thead>
<tr>
<th>Code</th>
<th>Full Name</th>
<th>Scale</th>
<th>Units</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>Line of sight neutral velocity (away: >0)</td>
<td>1.0</td>
<td>m/s</td>
<td>vnl</td>
</tr>
<tr>
<td>810</td>
<td>Neutral temperature</td>
<td>1.0</td>
<td>K</td>
<td>tn</td>
</tr>
</tbody>
</table>

Vector field parameters

<table>
<thead>
<tr>
<th>Code</th>
<th>Full Name</th>
<th>Scale</th>
<th>Units</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1410</td>
<td>Direction 1 neutral wind (eastward)</td>
<td>1.0</td>
<td>m/s</td>
<td>vne</td>
</tr>
<tr>
<td>1420</td>
<td>Direction 2 neutral wind (northward)</td>
<td>1.0</td>
<td>m/s</td>
<td>vne</td>
</tr>
<tr>
<td>1610</td>
<td>Direction 1 electric field (eastward)</td>
<td>1.0</td>
<td>E-05</td>
<td>Vm</td>
</tr>
</tbody>
</table>

Spectral parameters

<table>
<thead>
<tr>
<th>Code</th>
<th>Full Name</th>
<th>Scale</th>
<th>Units</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>Wavelength</td>
<td>0.1</td>
<td>nm</td>
<td>wav</td>
</tr>
</tbody>
</table>

Spectral parameters

- **Full Name**
- **Scale**
- **Units**
- **Name**

LF and MF Radars:

<table>
<thead>
<tr>
<th>Code</th>
<th>ABBR</th>
<th>ALT</th>
<th>LONG</th>
<th>LAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1210</td>
<td>SBF</td>
<td>-77.85</td>
<td>166.75</td>
<td></td>
</tr>
<tr>
<td>1375</td>
<td>RPK</td>
<td>65.13</td>
<td>-147.5</td>
<td>0.208</td>
</tr>
</tbody>
</table>

Passive Optical Instruments:

<table>
<thead>
<tr>
<th>Code</th>
<th>ABBR</th>
<th>ALT</th>
<th>LONG</th>
<th>LAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3010</td>
<td>DVS</td>
<td>-68.48</td>
<td>77.97</td>
<td>0.025</td>
</tr>
<tr>
<td>5160</td>
<td>AFP</td>
<td>18.345</td>
<td>293.25</td>
<td>0.00</td>
</tr>
</tbody>
</table>

LIDARs:

- **USU ALO Rayleigh LIDAR**
- **USU Mesospheric Temp Mapper LIDAR**

- **Code**
- **Full Name**
- **Scale**
- **Units**
- **Name**

- **USU ALO Rayleigh LIDAR**
- **USU Mesospheric Temp Mapper LIDAR**

- **Code**
- **Full Name**
- **Scale**
- **Units**
- **Name**
VSTO Use-case 1

UC1: Plot the observed/measured Neutral Temperature (Parameter) looking in the vertical direction for Millstone Hill Fabry-Perot interferometer (Instrument) from January 2000 to August 2000 (Temporal Domain) as a time series.

Precondition: portal application is authorized to access the backend data extraction and plotting service

5. User accesses the portal application
6. User goes through a series of views to select (in order) the desired observatory, instrument, record-type (kind of data), parameter, start and stop dates, and the plot type is inferred. At each step, the user selection determines the range of available options in the subsequent steps. NB, an alternate path is selection of start and stop dates, then instrument, etc.

3. The application validates the user request: verifying the logical correctness of the request, i.e. that Millstone Hill is an observatory that operates a type of instrument that measures neutral temperature (i.e. check that Millstone Hill <isA> observatory and check that the range of the measures property on the Millstone Hill Fabry Perot Interferometer subsumes neutral temperature). Also, the application must verify that no necessary information is missing from the request.

4. The application processes the user request to locate the physical storage of the data, returning for example a URL-like expression: find Millstone Hill FPI data of the correct type (operating mode; defined by CEDAR KINDAT since the instrument has two operating modes) in the given time range (Millstone Hill FPI <hasKindofData> 1701 <intersects> TemporalDomain [January 2000, August 2000])

5. The application plots the data in the specified plot type (a time series). This step involves extracting the data from records of one or more files, creating an aggregate array of data with independent variable time (of day or day+time depending on time range selected) and passing this to a procedure to create the resulting image.
CEDAR ontology – instrument classes

- **Radar**
 - Incoherent Scatter
 - Ionospheric Doppler (aka HF)
 - Middle Atmosphere (aka MLT)
 - MST
 - MF
 - LF
 - Meteor Wind

- **Sounders**
 - Ion

- **Optical (hasBand, measuresTo, etc.)**
 - Interferometers
 - Fabry-Perot (Use Case 1)
 - Michelson
 - IR
 - Doppler
 - Spectrometers
 - IR ([OH])
 - Airglow Imagers
 - All-Sky Cameras
 - Lidar
 - Spectrometers
 - Polarimeter
 - Heliograph
 - Photometers (hasChannel)
 - Single-Channel
 - Multi-Channel

Instrument Class Properties
- hasName:
- alsoKnownAs:
- isOperatedBy:
- hasOperator:
- isType:
- isPartofProgram:
- isFundedBy:
- hasCoverage:
- hasSensor:
- hasOperation:
- hasOperatingMode:
- hasOperatingFrequency:
- hasDataInterval:
- hasDataSet:
- hasLocation: LocationClass
 - hasAddress:
 - hasCityTown:
 - hasPostalCode:
 - hasCountry:
 - hasContinent:
 - hasLatitude: (geo, magnetic, etc.)
 - hasLongitude:
 - hasLocalTimeatZeroUT:
 - hasSensor or hasDetector
CEDAR ontology – parameters

PhysicalQuantity
 refersToRealm
 Density
 ElectronDensity
 NeutralDensity
 measuredBy: mass, number
 Pressure
 NeutralPressure
 Temperature
 IonTemperature
 ElectronTemperature
 NeutralTemperature
 Field
 hasMagnitude: xsd::number
 FieldComponent
 hasDirection
 hasCoordinateSystem
 MagneticFieldComponent
 ElectricFieldComponent
 VelocityFieldComponent

Wavelength: hasInterval
Wavenumber: hasInterval

Index
 hasSamplingRepresentation
 Geophysical
 Solar

StatisticalMeasure
 Covariance
 ChiSquare
 ReducedChiSquare
 CrossCorrelation
 Coherence
 Curtosis
 ...

StatisticalOperation (SWEET)
numerics.owl
Encoding the representation(s) – OWL–DL

```xml
<owl:Class rdf:ID="NeutralDensity">
  <rdfs:subClassOf rdf:resource="#Density"/>
  <owl:Restriction>
    <owl:onProperty rdf:resource="http://sweet.jpl.nasa.gov/ontology/space.owl#isPartOf"/>
    <owl:allValuesFrom rdf:resource="#Mesosphere"/>
  </owl:Restriction>
</owl:Class>

<owl:Class rdf:ID="IonTemperature">
  <rdfs:subClassOf rdf:resource="#Temperature"/>
  <owl:Restriction>
    <owl:onProperty rdf:resource="http://sweet.jpl.nasa.gov/ontology/space.owl#isPartOf"/>
    <owl:allValuesFrom rdf:resource="#Ionosphere"/>
  </owl:Restriction>
</owl:Class>

<owl:Class rdf:ID="Density">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="http://sweet.jpl.nasa.gov/ontology/numerics.owl#hasDefaultUnit"/>
      <owl:hasValue rdf:resource="http://sweet.jpl.nasa.gov/ontology/units.owl#kilogram_perMeterToPower3"/>
    </owl:Restriction>
  </rdfs:subClassOf>
  <rdfs:subClassOf rdf:resource="#MassConcentrationRelatedQuantity"/>
</owl:Class>
```
EarthRealm and Upper atmosphere

EarthRealm excerpt:

```xml
<owl:Class rdf:ID="Thermosphere">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasAverageLowerBoundaryReferenceHeight"/>
      <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#double">85000</owl:hasValue>
    </owl:Restriction>
  </rdfs:subClassOf>
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasAverageUpperBoundaryReferenceHeight"/>
      <owl:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#double">500000</owl:hasValue>
    </owl:Restriction>
  </rdfs:subClassOf>
  <rdfs:subClassOf rdf:resource="#AtmosphereLayer"/>
</owl:Class>
```
SunRealm and Active Regions

SunRealm excerpt:

<owl:Class rdf:ID="ActiveRegion">
<rdfs:subClassOf rdf:resource="#MagneticRegionType"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://sweet.jpl.nasa.gov/ontology/space.owl#isPartOf"/>
<owl:allValuesFrom rdf:resource="#SunSurfaceLayer"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasMagneticRegionType"/>
<owl:allValuesFrom rdf:resource="#SunMagneticRegion"/>
</owl:Restriction>
</rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://sweet.jpl.nasa.gov/ontology/space.owl#isPartOf"/>
</owl:Restriction>
</owl:Class>
Status

- VSTO ontology, version 0.1, (vsto.owl)
- Initial contributions to SWEET
- Initial mapping of VSTO ontology to SWEET
- VSTO specific instances (aka metadata)
- Detailed design and implementation for Use-case 1
- Use-case 2 (solar) and Use-case 3 (radar) are being formalized
- http://vsto.hao.ucar.edu/ – project web site
- Collaborations: CISM, GEON, NMI, SWEET, SciFlO, CDP, ECHO, NSDL/DLESE/OAI, SPDML, OPeNDAP, SRB
- Please contact (pfox@ucar.edu, or vsto.org) for more information
Additional material
CEDARWEB current architecture

- Page server
- Portal (ION) services
- Authentication
- URL (data) generator
- Plot handler
- Catalog service
- Protocol (http) server
- OPeNDAP server
- Web pages
- CEDAR data file
- Catalog (SQL)
- User DB